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Abstract Theeffectof radiationonunsteadynatural convection inatwo-dimensionalparticipating
medium between two horizontal concentric and vertically eccentric cylinders is investigated
numerically. The equations of transfer are written by using a bicylindrical coordinates system, the
stream function, and the vorticity. The finite volume radiation solution method and the control
volume approach are used to discretize the coupled equations of radiative transfer, momentum, and
energy. Original results are obtained for three eccentricities, Rayleigh number equal to 104, 105, and a
wide range of radiation-conduction parameter. The effects of optical thickness, wall emissivity, and
scattering on flow intensity and heat transfer are discussed.

Nomenclature
e = dimensionless eccentricity, e � oioo

roÿri

g = gravitational acceleration: m.sÿ2

I = radiant intensity: W.mÿ2.srÿ1

I0 = blackbody intensity: W.mÿ2.srÿ1

L = total number of discrete solid angles
L� = total number of discrete solid

angles oriented to a given boundary
N = dimensionless quantity, N1

i �
1

�
1

R
�
1


:nid


N�;N' = number of discrete angles in polar
� and azimuthal ' directions

N�;N� = number of nodes in � and �
directions

n = unit vector normal to the control
volume face

o = centre of a cross section of the
cylinder (Figure 1)

Pr = Prandtl number, Pr = �=�
Q = dimensionless total heat flux

defined in equation (25)
Qc = dimensionless conductive heat flux

defined in equation (23)

Qr = dimensionless radiative heat flux
defined in equation (24)

r = radius of a cross section of the
cylinder (Figure 1): m

R = source term defined in equation
(12): W.mÿ2.srÿ1

Ra = Rayleigh number, Ra �
g�c�ro ÿ ri�3�Ti ÿ To�=��

Rc = radiation-conduction parameter,
Rc � ri�T3

o=�
s = distance in the direction 
 of the

intensity ± m
t = dimensionless time, t � t0�=

�ro ÿ ri�2
T = dimensionless temperature, T �

�T0 ÿ To�=�Ti ÿ To�
u� = dimensionless �-component of

velocity, u� � u�
0�ro ÿ ri�=

� � 1
C
@ 
@�

u� = dimensionless �-component of
velocity, u� � u�

0�ro ÿ ri�=� �
ÿ 1

C
@ 
@�
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Introduction
The problem of natural convection heat transfer in the annulus between two
concentric and eccentric horizontal cylinders has been a subject of intensive
research in the recent years. Comprehensive reviews (Powe et al., 1971; Kuehn
and Goldstein, 1976; 1978; Charrier-Mojtabi et al., 1979; Projahn et al., 1981;
Tsui and Tremblay, 1984; Karki and Patankar, 1988; Kumar, 1988) on natural
convection in such configuration are available and there is no need to repeat
them.

Over the last three decades, combined radiation and natural convection in
enclosure has received considerable attention. Larson and Viskanta (1976)
treated transient combined laminar free convection and radiation in a
rectangular enclosure. To study the problem of radiation-natural convection in
square enclosures with vertical partitions, Chang et al. (1983) developed a
modified radial flux method. Hassab and Ozizik (1979), Lauriat and Desreyaud
(1985) then Fusegi and Farouk (1989) utilised the P1 approximation to model
the radiation-natural convection interactions within a rectangular enclosure.
The first two references analysed the effect of radiation and boundary
conditions on the stability of the fluid, and the last examined both the laminar
and turbulent regimes. Webb and Viskanta (1987) analysed natural convection
induced by irradiation in a rectangular participating medium using one
dimensional radiation model. Yucel et al. (1989) used the discrete ordinate
method to study radiation-natural convection in inclined enclosure filled with a

Greek symbols
� = thermal diffusivity: m2.sÿ1

� = extinction coefficient: mÿ1

�c = coefficient of thermal
expansion: mÿ1

�A = area of a control volume face:
m2

�v = control volume: 
m3

�
 = control solid angle, �
1 �R �1�
�1ÿ
R '1�
'1ÿ sin �d�d': sr

" = emissivity
� = temperature ratio, � � �Tiÿ

To�=To

ÿ = radius ratio, ÿ � ro=ri

�; �; z = bicylindrical coordinates
�i = boundary of the inner cylinder

in bicylindrical coordinates
system,
�i � coshÿ1 1ÿe2�ÿ�1�e2�

2ÿe

h i
�o = boundary of the outer cylinder

in bicylindrical coordinates
system,
�o � coshÿ1 1�e2�ÿ�1�e2�

2e

h i
� = thermal conductivity:

W.mÿ1.Kÿ1

� = kinematic viscosity: m2.sÿ1

�; ' = polar and azimuthal angles
respectively: rd

� = density: kg.mÿ3

� = Stefan-Boltzmann constant:
W.mÿ2.Kÿ4

� = optical thickness, � � �ri

! = dimensionless vorticity,
! � !0�ro ÿ ri�2=�

!0 = scattering albedo

 = unit vector in the direction of

the intensity
 = dimensionless stream function,

 �  0=�
Subscripts
e, w, n, s = faces of control volume centred

in P
E,W, N, S = nodes around the nodal point P
i = inner cylinder or control

volume face
o = outer cylinder
P = nodal point
W = boundary of the computational

domain

Superscripts
l; l0 = discrete angular directions
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heat generating fluid. More recently, Tan and Howell (1991) adapted the
product-integral method to solve the radiative transfer equation in radiation-
natural convection problem within a two-dimensional square enclosure.

To our knowledge, the only publications treating the radiation-natural
convection problem within a horizontal annular space are those of Onyegegbu
(1986), Tan and Howell (1989), and Borjini et al. (1998). All of them assumed a
steady flow. The first two references considered the case of concentric cylinders
and utilised, to solve the radiative transfer equation, the Milne-Eddington
approximation and the YIX technique respectively. The last reference examined
the case of eccentric cylinders using the finite volume method. This method was
initially developed by Raithby and Chui (1990) and Chai et al. (1994). Chui et al.
(1992) implemented it to study the radiative transfer within cylindrical
enclosures. In order to study irregular geometries, Chai et al. (1995) developed it
in curvilinear coordinates system. Moder et al. (1996) used it to study
axisymmetric radiative transfer through a cylinder and nonaxisymmetric
radiative transfer through two-and three-dimensional annular sectors. Lee et al.
(1996) utilised it to analyse radiative-convective heat transfer around a circular
cylinder in a cross flow. Kim and Baek (1997) applied it to study radiative
transfer in axisymmetric as well as three-dimensional cylindrical geometries.

This work presents a study of radiation-unsteady natural convection
interactions within horizontal annular space between concentric and vertically
eccentric cylinders.

Formulation and method of resolution
As shown in Figure 1, the physical system consists of an annulus bounded by
two horizontal isothermal cylinders. The cylinder walls are grey, diffuse, and
have the same emissivity. The annular medium is considered to be grey,
emitting, absorbing, and isotropically scattering gas. Initially, the annulus is at a
uniform temperature To, while the temperature of the inner cylinder is suddenly
changed to a higher temperature Ti and the outer cylinder is maintained at To. It
is assumed that the flow in the system is laminar with no-slip conditions

Figure 1.
Schematic
representation of the
system section
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applicable at the walls. The viscous dissipation is negligible, the physical
properties are constant, and the Boussinesq approximation is valid.

Using bicylindrical coordinates system (�; �; z) (Moon and Spencer, 1971)
and a scaling length, velocity, and time by ro ÿ ri; �=�ro ÿ ri� and �ro ÿ ri�2=�,
the governing equations in dimensionless stream function-vorticity form are:
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where:

A �; �� � � 1ÿ cosh � cos �

cosh � ÿ cos �
�4�

B �; �� � � sinh � sin �

cosh � ÿ cos �
�5�

C �; �� � � 1

ro ÿ ri

ri sinh �i

cosh � ÿ cos �
�6�

The associated initial and boundary conditions for the problem considered are:

(1) for t � 0

! �  � @ 
@�
� @ 
@�
� T � 0 everywhere �7�

(2) for t > 0

. on the inner cylinder (� � �i; 0 � � � �):

 � @ 
@�
� 0; T � 1 �8�

. on the outer cylinder (� � �o; 0 � � � �):

 � @ 
@�
� T � 0 �9�
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. on the symmetry axis (� � 0; �; �o < � < �i):

 � ! � @T

@�
� 0 �10�

The radiative transfer equation, in absorbing, emitting, and isotropically
scattering medium, can be written as (Siegel and Howell, 1992):

@I s;
� �
@s

� �I s;
� � � �R �11�

where:

R � 1ÿ !0� �I0 s� � � !0

4�

Z
4�

I s;
0� �d
0 �12�

Where I0 is the blackbody intensity, s is the distance in the direction of the
intensity, 
 and 
0 are the unit vectors in the outward and the inward
directions of radiation, d
0 is the elementary control solid angle centred on 
0,
and !0 is the scattering albedo.

The finite volume method is utilised to discretize equation (11). The
computational domain is divided into finite volumes and the intensity direction
into finite number of solid angles. This equation is integrated over each control
volume and control angle. Using the step scheme, one gets the following system
of algebraic coupled equations:

al
pIl

p � al
WIl

W � al
EIl

E � al
SIl

S � al
NIl

N � bP �13�

where:

al
W � �Aw max ÿNl

w; 0
� � �14�

al
E � �Ae max ÿNl

e; 0
� � �15�

al
N � �An max ÿNl

n; 0
� � �16�

al
S � �As max ÿNl

s; 0
� � �17�

al
p ��Aw max Nl

w; 0
� ���Ae max Nl

e; 0
� ���As max Nl

s; 0
� �

��An max Nl
n; 0

� �� ��vp

�18�

bP � �Rp�vp �19�
More details are in Chai et al. (1994; 1995) and Borjini et al. (1998).
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For the grey and diffuse surface, the radiative boundary conditions are:

Il
W �

"�T4
W

�
� 1ÿ "� �

�

X
L�

Nl0
W

�� ��Il0
W�
l0 �20�

The symmetry axis is assumed to behave like a grey and specular surface (Kim
and Baek, 1991). Thus the correspondent boundary conditions can be written
as:

Il
W � Il0

W if 
l:e� � 
l0 :e� and 
l:e� > 0; � � 0 �21�

Il
W � Il0

W if 
l:e� � 
l0 :e� and 
l:e� < 0; � � � �22�

We define the following dimensionless fluxes:

. local conductive flux:

Qc � 1

C

@T

@�
�23�

. local radiative flux:

Qr � Rc

��T4
o

XL

l�1

NlIl�
l �24�

. local total flux:

Q � Qc �Qr �25�

. average conductive flux:

�Qc �
Z �

0

CQcd�=

Z �

0

Cd� �26�

. average radiative flux:

�Qr �
Z �

0

CQrd�=

Z �

0

Cd� �27�

. average total flux:

�Q � �Qc � �Qr �28�

Equations (1-3) are discretized using the control volume method (Patankar,
1980). The power-low scheme (Patankar, 1980) for treating convective terms
and the fully implicit procedure to discretize the temporary derivatives are
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retained. The grid is uniform in both directions with additional nodes on
boundaries. The resulting nonlinear algebraic equations are solved using the
successive relaxation iterating scheme (Bejan, 1984). The equation of radiative
transfer is solved by repeatedly sweeping across the grid until convergence
without taking into account the optimal order in which the nodes should be
visited. The solution is considered acceptable when the following convergence
criterion is satisfied for each step of time:

maxj n ÿ  nÿ1j
maxj nj �maxjTn ÿ Tnÿ1j � 10ÿ5 �29�

where the superscript n designates the nth iteration.
The solution is regarded as a steady state if the following criterion is

satisfied:

maxj m ÿ  mÿ1

maxj mj � 10ÿ5

where m denotes the number of the time step. We define the time ts which
characterises the beginning of this state by the smallest instant verifying this
condition.

We utilise the spatial and angular mesh chosen by Borjini et al. (1998):
N� �N� � 31� 61 and N� �N' � 2� 12. Figure 2 shows the influence of
the refinement of time increment on inner and outer average fluxes when the
inner cylinder is moved toward the bottom (e = ±0.625) with Ra = 105 and Rc =
0. When the time step is weak, the time to reach the steady solution is long.
Indeed, the practice of solving a steady-state problem via the unsteady
formulation is simply a particular kind of under-relaxation procedure
(Patankar, 1980). The smaller is the time step chosen, the stronger is the under-
relaxation. The step �t � 10ÿ4 is retained to carry out all numerical tests.
Refining this time step results in minor changes of the transient patterns and
has no detectable effect on the steady solution. To validate the present
numerical code, steady natural convection between concentric and vertically
eccentric cylinders was solved and compared with the corresponding
benchmark solution (Kuehn and Goldstein, 1976; 1978 ; Projahn et al., 1981).
The comparison shows quite good agreement with both experimental and
numerical results.

Results and discussion
In the absence of contrary indication, all the results are obtained with � � 1,
Pr = 0.7, ÿ � 2:6; � � 1; !0 � 0; and " � 1.

Figure 3 shows the time variations of streamline and temperature contours
for Ra � 104, Rc = 0, 1, and 10 when the inner cylinder is moved towards the
bottom (e = ±0.625). Because of the action at distance of radiation, the fluid far
from the hot wall is more quickly heated when the radiation-conduction
parameter increases and the ascendant movement, when t increases, of the
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position of the core diminishes. For Rc = 10, the steady thermal field is fast
reached, while the flow still manifests a transient zone. Similar results are
observed for Ra � 105 as well as for Ra � 104 in the concentric case and in the
one in which the inner cylinder is moved toward the top (e = 0.625).

Henceforth we only consider the values of Rc between 0 and 1. For higher
values, heat is essentially transferred by radiation (greater than 80 per cent of
the total heat transfer when Rc equals 10).

Figure 3.
Influence of the
radiation-conduction
parameter on streamline
and temperature
contours for e = ±0.625
and Ra = 104
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Figure 4 depicts the influence of radiation-conduction parameter on the time
evolution of the maximum of stream function when Ra � 104 and e = ±0.625. It
shows that the stream function increases at first until reaching a maximum and
decreases at larger times; i.e. the effect of the local Rayleigh number on the flow
pattern decreases with time due to mixing and internal temperature balancing
(KuÈblbeck et al., 1980). The radiative transfer accelerates this balancing. When
Rc increases, the maximum of max , situated at t � 0.095, becomes less
pronounced, whereas the asymptotic limit amplifies: max increases by 35 per
cent when Rc varies from 0 to 1. This amplification also exists for steady heat
transfer: the average total flux decreases by 82 per cent when Rc varies from 1
to 0. This is confirmed by Figure 5a which also shows that, when radiation is
dominating, heat transfer, particularly on the outer cylinder, varies regularly.

According to Figure 5b, we deduce that the percentage of radiative flux
decreases with time on outer cylinder and increases on inner cylinder. In the
transient zone, radiative transfer is more important on outer cylinder than on
inner cylinder and conversely in the steady zone. This is explained on the one
hand by the choice of the boundary and the initial conditions, which impose, at
t = 0, a nil conductive flux on outer cylinder and another infinite on inner
cylinder and on the other hand by the radiative flux proportionality to T4.

Figure 6 shows the time variations of streamline and temperature contours
for a concentric configuration with Ra � 105 and Rc = 1. A secondary cell
appears, at t � tb � 0:035, on the top of the inner cylinder. Without radiation
(Rc = 0), the flow is unicellular for each instant. For t < tb, the position of the
principal core moves upward when t increases. Beyond this instant, the
secondary cell grows and pushes downward on this core. At t = ts, the intensity
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Figure 4.
Influence of the

radiation-conduction
parameter on the

maximum of the stream
function for e = ±0.625

and Ra = 104
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of the secondary flow represents 52 per cent of the one of the principal flow. For
the same set of parameters, Tan and Howell (1989) noted the presence, in
unsteady regime, of this secondary flow.

Figure 7a illustrates the time evolution of average total flux on concentric
inner and outer cylinders for Ra � 105, Rc = 0, 0.1 and 1. For Rc = 1, the inner
flux does not vary as regularly as the outer flux due to the formation of a
secondary cell just above the inner cylinder. The stationary average total flux
decreases by 76 per cent when Rc varies from 1 to 0. According to Figure 7b,
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Figure 5.
Influence of the
radiation-conduction
parameter for e = ±0.625
and Ra = 104 on:
(a) average total inner
( �Qin) and outer
(ÿ� �Qout) fluxes;
(b) percentage of the
average radiative flux
on inner and outer
cylinders
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Figure 6.
Time effect on
streamline and

temperature contours for
e = 0, Ra = 105, and

Rc = 1
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the peak presented by the curve is less pronounced for Rc = 1 than for Rc = 0

and 0.1. This is due to the increase of the steady limit of the stream function

which rises by 61 per cent when Rc varies from 0 to 1.

For this configuration the calculus is convergent for all values of Rc, while

with steady codes (Tan and Howell, 1989; Borjini et al., 1998) no stable solution
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Figure 7.
Influence of the
radiation-conduction
parameter for e = 0 and
Ra = 105 on: (a) average
total inner ( �Qin) and
outer (ÿ� �Qout) fluxes;
(b) the maximum of the
stream function
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exists for higher Rc values. Figure 8 shows the disappearance of the secondary
flow when Rc rises. For Rc =1, the flow presents a symmetry relatively to the
horizontal diameter.

Figure 9 shows the evolution in time of streamline and temperature contours
for positive vertical eccentricity (e = 0.625) when Ra � 105 and Rc = 0. A
secondary cell originates, at t � tb � 0:052, in the proximity of the top of outer
cylinder and not near the one of the inner cylinder (concentric configuration,

Figure 8.
Influence of the

radiation-conduction
parameter on streamline

and temperature
contours for e = 0 and

Ra = 105
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Figure 9.
Time effect on
streamline and
temperature contours for
e = 0.625, Ra = 105, and
Rc = 0
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Figure 6). At t = ts, the secondary flow represents 31 per cent of the principal
one. The same secondary flow has been founded by Projahn et al. (1981) in the
steady state. For Rc = 1 and 0.1, the flow is unicellular for each instant. This is
confirmed by Figure 10a which shows that, when Rc rises, the maximum of
max �t� becomes less pronounced and disappears for Rc = 1. The steady
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maximum of the stream function doubles when Rc varies from 0 to 1. On Figure
10b are presented the time variations of average total fluxes on inner and outer
cylinder. For Rc = 1, these variations are regular. When Rc decreases from 1 to
0, the steady heat transfer diminishes by 75 per cent.

Effect of radiative parameters
In this section, computations were performed with e = ±0.625, Rc = 1, and
Ra � 104.

Figure 11 brings to the fore the influence of the wall emissivity on
conductive and radiative transfers on both cylinders for � � 1 and !0 � 0.
When " varies from 1 to 0.1, the steady inner and outer radiative fluxes
decrease respectively by 90 per cent and 92 per cent. For this variation of ", the
stationary conductive fluxes increase by 58 per cent and 18 per cent on the
inner and outer cylinders respectively. Indeed, when the wall emissivity rises,
the intensity emitted by the hot cylinder becomes important. This increases
radiative flux that heats besides the fluid in the core of the annular space and so
diminishes the temperature gradient near the walls. One can note, for " � 0:1
and 0.5, that the steady conductive fluxes on outer cylinder superpose, while
they manifest two distinct transient paths. In the stationary state, the
maximum of the stream function rises by 35 per cent when " increases from 0.1
to 1: it varies from 19.92 to 26.94.

On Figure 12 are presented the time variations of average conductive and
radiative fluxes on the inner and outer cylinders for " � 1, !0 � 0, and for
different optical thicknesses. When � varies from 0.1 to 10, the inner and outer
steady radiative fluxes reduce respectively by 78 per cent and 88 per cent. The
more optically thin the medium is, the more regularly varies the radiative heat
transfer. The conductive flux is remarkably less sensitive to � variation. When
� increases from 0.1 to 1 the steady conductive flux on outer cylinder rises by
61 per cent then still almost constant when � rises again. For � = 10, radiative
and conductive flux manifest similar profiles. Indeed, for optically thick media,
radiation can be assimilated to a diffusion mode of heat transfer with thermal
dependent conductivity (Siegel and Howell, 1992). In the steady state, the
maximum of the stream function rises by 36 per cent when � varies from 0.1 to
10: it changes from 21.67 to 29.49. The results of Tan and Howell (1991),
concerning a rectangular geometry, show also the sensibility of steady heat
transfer and flow to the optical thickness and the wall emissivity.

As shown in Figure 13, the scattering albedo affects little the heat transfer
on inner cylinder. When !0 varies from 0 to 0.9, the asymptotic limit of outer
conductive flux diminishes by 34 per cent. The more diffusing the semi-
transparent medium is, the less regularly this flux varies in the transient zone.
For the same variation of !0, the steady radiative flux on the outer cylinder
rises by 11 per cent and the steady maximum of the stream function reduces by
16 per cent: it changes from 26.94 to 22.72.



Numerical
analysis

759

Conclusion
Using the finite volume method to resolve the radiative transfer equation and
control volume Patankar's technique, we have analysed the effect of radiative
transfer on unsteady natural convection in horizontal annular space.
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The effect of radiative transfer is as important in the steady zone as in the
unsteady one. The increase of radiation-conduction parameter, in the absence
of any generation of secondary flow, smoothes the heat flux profiles in the
unsteady region and accelerates the internal temperature balancing.
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In the steady zone, radiative heat transfer is more influent on the inner cylinder
than on the outer cylinder and conversely in the transient zone. When t
increases, this influence diminishes on the outer cylinder and accentuates on
the inner cylinder.
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The transient zone is more narrow in the presence of radiation than in pure
convection. This can justify the use of steady coefficient of heat transfer to
model unsteady systems.

In pure convection, the secondary flow originates near the top of outer
cylinder (cold) and near the one of the inner cylinder (hot) when the medium is
radiatively participant.

The optical thickness and the wall emissivity affect considerably heat
transfer and the intensity of the flow. The more optically thin the medium is,
the more regular are the time variations of radiative transfer. The scattering
albedo influences more the outer cylinder than the inner one. The more
diffusing the medium is, the less regular are the variations of unsteady
conductive fluxes.

In some cases, there is a discordance between the results obtained from
steady codes and from this unsteady code.
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